Lifecycle cost and CO2 emissions of residential heat and electricity prosumers in Finland and the Netherlands

Research output: Contribution to journalArticleScientificpeer-review

Researchers

  • Benjamin Manrique Delgado
  • Rajesh Kotireddy
  • Sunliang Cao
  • Ala Hasan
  • Pieter-Jan Hoes
  • Jan L.M. Hensen
  • Kai Siren

Research units

  • Eindhoven University of Technology
  • VTT Technical Research Centre of Finland
  • Hong Kong Polytechnic University

Abstract

The complexity of finding solutions to reach energy sustainability in the built environment poses a significant challenge. Therefore, there is interest in adequate management of the generation, conversion, storage, use and exchange of heat and electricity. The novelty of this study exists in presenting and comparing multiobjective optimizations for operational CO2 emissions and lifecycle costs (LCC) of heat and electricity prosumers in the Netherlands and Finland, with and without net-metering. The premise relies on using surplus electricity to drive heat pumps for heat export instead of exporting surplus electricity. In the Netherlands, the calculated cost optimal solutions consist of using surplus electricity to drive an air source heat pump and export heat, with CO2 emissions and ΔLCC of −41.1 kgCO2eq/(m2 a) and €−69.7/m2 (22% lower), respectively. In Finland, the heat export strategy allows a ΔLCC of €−24.5/m2 (8% lower), with CO2 emissions reduced by −32.5 kgCO2eq/(m2 a). Without net-metering, the ΔLCC of the energy system rises to €−4/m2 in the Netherlands; with net metering, the ΔLCC lowers to €−65.6/m2 in Finland. The results indicate the potential for significant economic and emission reductions in heat and electricity prosumers.

Details

Original languageEnglish
Pages (from-to)495-508
Number of pages14
JournalEnergy Conversion and Management
Volume160
Publication statusPublished - 15 Mar 2018
MoE publication typeA1 Journal article-refereed

    Research areas

  • CO2emissions, LCC, Heat and electricity prosumers, Multiobjective optimization, Renewable energy systems

ID: 17322382