Projects per year
Abstract
Determining the phase diagram of interacting quantum many-body systems is an important task for a wide range of problems such as the understanding and design of quantum materials. For classical equilibrium systems, the Lee-Yang formalism provides a rigorous foundation of phase transitions, and these ideas have also been extended to the quantum realm. Here, we develop a Lee-Yang theory of quantum phase transitions that can include thermal fluctuations caused by a finite temperature, and it thereby provides a link between the classical Lee-Yang formalism and recent theories of phase transitions at zero temperature. Our methodology exploits analytic properties of the moment generating function of the order parameter in systems of finite size, and it can be implemented in combination with tensor-network calculations. Specifically, the onset of a symmetry-broken phase is signaled by the zeros of the moment generating function approaching the origin in the complex plane of a counting field that couples to the order parameter. Moreover, the zeros can be obtained by measuring or calculating the high cumulants of the order parameter. We determine the phase diagram of the two-dimensional quantum Ising model and thereby demonstrate the potential of our method to predict the critical behavior of two-dimensional quantum systems at finite temperatures.
Original language | English |
---|---|
Article number | 054402 |
Pages (from-to) | 1-10 |
Number of pages | 10 |
Journal | Physical Review B |
Volume | 106 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Aug 2022 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Lee-Yang theory of the two-dimensional quantum Ising model'. Together they form a unique fingerprint.-
Lado Jose AT-palkka: Engineering fractional quantum matter in twisted van der Waals materials
Lado, J. (Principal investigator)
01/09/2020 → 31/08/2025
Project: Academy of Finland: Other research funding
-
Lado Jose AT-kulut: Engineering fractional quantum matter in twisted van der Waals materials
Lado, J. (Principal investigator), Hyart, T. (Project Member), Kumar, P. (Project Member) & Koch, R. (Project Member)
01/09/2020 → 31/08/2023
Project: Academy of Finland: Other research funding
-
Finnish Centre of Excellence in Quantum Technology
Flindt, C. (Principal investigator), Potanina, E. (Project Member), Burset Atienza, P. (Project Member) & Pyhäranta, T. (Project Member)
01/01/2018 → 31/12/2020
Project: Academy of Finland: Other research funding