Abstract

We introduce a novel grid-independent model for learning partial differential equations (PDEs) from noisy and partial observations on irregular spatiotemporal grids. We propose a space-time continuous latent neural PDE model with an efficient probabilistic framework and a novel encoder design for improved data efficiency and grid independence. The latent state dynamics are governed by a PDE model that combines the collocation method and the method of lines. We employ amortized variational inference for approximate posterior estimation and utilize a multiple shooting technique for enhanced training speed and stability. Our model demonstrates state-of-the-art performance on complex synthetic and real-world datasets, overcoming limitations of previous approaches and effectively handling partially-observed data. The proposed model outperforms recent methods, showing its potential to advance data-driven PDE modeling and enabling robust, grid-independent modeling of complex partially-observed dynamic processes.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 36 (NeurIPS 2023)
PublisherCurran Associates Inc.
Number of pages24
ISBN (Electronic)978-1-7138-9992-1
Publication statusPublished - 2024
MoE publication typeA4 Conference publication
EventConference on Neural Information Processing Systems - Ernest N. Morial Convention Center, New Orleans, United States
Duration: 10 Dec 202316 Dec 2023
Conference number: 37
https://nips.cc/

Publication series

NameAdvances in Neural Information Processing Systems
PublisherMorgan Kaufmann Publishers
Volume36
ISSN (Print)1049-5258

Conference

ConferenceConference on Neural Information Processing Systems
Abbreviated titleNeurIPS
Country/TerritoryUnited States
CityNew Orleans
Period10/12/202316/12/2023
Internet address

Fingerprint

Dive into the research topics of 'Learning Space-Time Continuous Latent Neural PDEs from Partially Observed States'. Together they form a unique fingerprint.

Cite this