Learning conditional variational autoencoders with missing covariates

Siddharth Ramchandran*, Gleb Tikhonov, Otto Lönnroth, Pekka Tiikkainen, Harri Lähdesmäki

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
143 Downloads (Pure)

Abstract

Conditional variational autoencoders (CVAEs) are versatile deep latent variable models that extend the standard VAE framework by conditioning the generative model with auxiliary covariates. The original CVAE model assumes that the data samples are independent, whereas more recent conditional VAE models, such as the Gaussian process (GP) prior VAEs, can account for complex correlation structures across all data samples. While several methods have been proposed to learn standard VAEs from partially observed datasets, these methods fall short for conditional VAEs. In this work, we propose a method to learn conditional VAEs from datasets in which auxiliary covariates can contain missing values as well. The proposed method augments the conditional VAEs with a prior distribution for the missing covariates and estimates their posterior using amortised variational inference. At training time, our method accounts for the uncertainty associated with the missing covariates while simultaneously maximising the evidence lower bound. We develop computationally efficient methods to learn CVAEs and GP prior VAEs that are compatible with mini-batching. Our experiments on simulated datasets as well as on real-world biomedical datasets show that the proposed method outperforms previous methods in learning conditional VAEs from non-temporal, temporal, and longitudinal datasets.
Original languageEnglish
Article number110113
JournalPattern Recognition
Volume147
Early online date11 Nov 2023
DOIs
Publication statusPublished - Mar 2024
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Learning conditional variational autoencoders with missing covariates'. Together they form a unique fingerprint.

Cite this