Large-scale functional networks connect differently for processing words and symbol strings

Research output: Contribution to journalArticleScientificpeer-review

Researchers

Research units

Abstract

Reconfigurations of synchronized large-scale networks are thought to be central neural mechanisms that support cognition and behavior in the human brain. Magnetoencephalog-raphy (MEG) recordings together with recent advances in network analysis now allow for sub-second snapshots of such networks. In the present study, we compared frequency-resolved functional connectivity patterns underlying reading of single words and visual recognition of symbol strings. Word reading emphasized coherence in a left-lateralized network with nodes in classical perisylvian language regions, whereas symbol processing recruited a bilateral network, including connections between frontal and parietal regions previously associated with spatial attention and visual working memory. Our results illustrate the flexible nature of functional networks, whereby processing of different form categories, written words vs. symbol strings, leads to the formation of large-scale functional networks that operate at distinct oscillatory frequencies and incorporate task-relevant regions. These results suggest that category-specific processing should be viewed not so much as a local process but as a distributed neural process implemented in signature networks. For words, increased coherence was detected particularly in the alpha (8–13 Hz) and high gamma (60–90 Hz) frequency bands, whereas increased coherence for symbol strings was observed in the high beta (21–29 Hz) and low gamma (30–45 Hz) frequency range. These findings attest to the role of coherence in specific frequency bands as a general mechanism for integrating stimulus-dependent information across brain regions.

Details

Original languageEnglish
Article numbere0196773
Pages (from-to)1-19
JournalPloS one
Volume13
Issue number5
Publication statusPublished - 1 May 2018
MoE publication typeA1 Journal article-refereed

Download statistics

No data available

ID: 21094468