Abstract
We present density functional theory (DFT) calculations of atomic ionization potentials and lattice constants of simple solids from low atomic numbers Z to the large-Z limit. We compare different kinetic energy functional approximations [Kohn-Sham (KS) vs simple orbital-free functionals] and, in the case of orbital free, also different methods for including the nuclear potential (all-electron with the projector augmented wave method vs local pseudopotentials). For both ionization potentials and lattice constants, all-electron orbital-free DFT does yield the general trend of KS DFT for moderate values of the atomic number Z. For large values of Z, all-electron orbital-free DFT deviates from the KS DFT results. Local pseudopotentials give a better qualitative description by adding shell oscillations to the orbital-free DFT model. We show that both all-electron orbital-free DFT and KS DFT have a finite value for nonrelativistic lattice constants in the large-Z limit.
Original language | English |
---|---|
Article number | 244101 |
Pages (from-to) | 1-8 |
Number of pages | 8 |
Journal | Journal of Chemical Physics |
Volume | 151 |
Issue number | 24 |
DOIs | |
Publication status | Published - 28 Dec 2019 |
MoE publication type | A1 Journal article-refereed |