Lack of P4H-TM in mice results in age-related retinal and renal alterations

Henri Leinonen, Maarit Rossi, Antti Salo, Päivi Tiainen, Jaana Hyvärinen, Marja Pitkänen, Raija Sormunen, Ilkka Miinalainen, Chi Zhang, Raija Soininen, Kari Kivirikko, Ari Koskelainen, Heikki Tanila, Johanna Myllyharju, Peppi Koivunen

Research output: Contribution to journalArticleScientificpeer-review

9 Citations (Scopus)

Abstract

Age-related macular degeneration (AMD), affecting the retinal pigment epithelium (RPE), is the leading cause of blindness in middle-aged and older people in developed countries. Genetic and environmental risk factors have been identified, but no effective cure exists. Using a mouse model we show that a transmembrane prolyl 4-hydroxylase (P4H-TM), which participates in the oxygen-dependent regulation of the hypoxia-inducible factor (HIF), is a potential novel candidate gene for AMD. We show that P4h-tm had its highest expression levels in the mouse RPE and brain, heart, lung, skeletal muscle and kidney. P4h-tm-/- mice were fertile and had a normal life span. Lack of P4h-tm stabilized HIF-1α in cortical neurons under normoxia, while in hypoxia it increased the expression of certain HIF target genes in tissues with high endogenous P4h-tm expression levels more than in wild-type mice. Renal erythropoietin levels increased in P4h-tm-/- mice with aging, but the resulting ∼2-fold increase in erythropoietin serum levels did not lead to erythrocytosis. Instead, accumulation of lipid-containing lamellar bodies in renal tubuli was detected in P4h-tm-/- mice with aging, resulting in inflammation and fibrosis, and later glomerular sclerosis and albuminuria. Lack of P4h-tm was associated with retinal thinning, rosette-like infoldings and drusen-like structure accumulation in RPE with aging, as is characteristic of AMD. Photoreceptor recycling was compromised, and electroretinograms revealed functional impairment of the cone pathway in adult P4h-tm-/- mice and cone and rod deficiency in middle-aged mice. P4H-TM is therefore imperative for normal vision, and potentially a novel candidate for age-induced diseases, such as AMD.
Original languageEnglish
JournalHUMAN MOLECULAR GENETICS
Volume25
Issue number17
DOIs
Publication statusPublished - 27 Jul 2016
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Lack of P4H-TM in mice results in age-related retinal and renal alterations'. Together they form a unique fingerprint.

Cite this