Kirigami actuators

Research output: Contribution to journalArticleScientificpeer-review

Researchers

  • Marcelo A. Dias
  • Michael P. McCarron
  • Daniel Rayneau-Kirkhope
  • Paul Z. Hanakata
  • David K. Campbell
  • Harold S. Park
  • Douglas P. Holmes

Research units

  • Aarhus University
  • James Madison University
  • Boston University

Abstract

Thin elastic sheets bend easily and, if they are patterned with cuts, can deform in sophisticated ways. Here we show that carefully tuning the location and arrangement of cuts within thin sheets enables the design of mechanical actuators that scale down to atomically-thin 2D materials. We first show that by understanding the mechanics of a single non-propagating crack in a sheet, we can generate four fundamental forms of linear actuation: roll, pitch, yaw, and lift. Our analytical model shows that these deformations are only weakly dependent on thickness, which we confirm with experiments on centimeter-scale objects and molecular dynamics simulations of graphene and MoS2 nanoscale sheets. We show how the interactions between non-propagating cracks can enable either lift or rotation, and we use a combination of experiments, theory, continuum computational analysis, and molecular dynamics simulations to provide mechanistic insights into the geometric and topological design of kirigami actuators.

Details

Original languageEnglish
Pages (from-to)9087-9092
Number of pages6
JournalSoft Matter
Volume13
Issue number48
Publication statusPublished - 2017
MoE publication typeA1 Journal article-refereed

ID: 16795091