Irradiation-induced stiffening of carbon nanotube bundles

M. Sammalkorpi, A.V. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski

Research output: Contribution to journalArticleScientificpeer-review

53 Citations (Scopus)

Abstract

Recent experiments have demonstrated that electron irradiation of bundles of single-walled carbon nanotubes resulted in dramatic increase of the bundle bending modulus at moderate irradiation doses, followed by a decrease in mechanical properties at higher doses. To understand such a behavior, we employ molecular dynamics simulations with empirical potentials and analytical approximations to calculate defect production rates and mechanical properties of the irradiated nanotubes. We show that the observed peak in the bending modulus originates from a trade-off between irradiation-induced bundle stiffening via inter-tube covalent bonds and a drop in the Young’s modulus of individual nanotubes due to vacancies.
Original languageEnglish
Pages (from-to)142–145
JournalNUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION B: BEAM INTERACTIONS WITH MATERIALS AND ATOMS
Volume228
Issue number1-4
DOIs
Publication statusPublished - 2005
MoE publication typeA1 Journal article-refereed

Keywords

  • carbon nanotube
  • molecular dynamics
  • irradiation
  • bending modulus
  • load transfer
  • defects

Fingerprint

Dive into the research topics of 'Irradiation-induced stiffening of carbon nanotube bundles'. Together they form a unique fingerprint.

Cite this