Investigation of significantly high barrier height in Cu/GaN Schottky diode
Research output: Contribution to journal › Article › Scientific › peer-review
Researchers
Research units
- Indian Institute of Technology
Abstract
Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O) layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.
Details
Original language | English |
---|---|
Article number | 015206 |
Pages (from-to) | 1-7 |
Number of pages | 7 |
Journal | AIP ADVANCES |
Volume | 6 |
Issue number | 1 |
Publication status | Published - 1 Jan 2016 |
MoE publication type | A1 Journal article-refereed |
- N-type GaN, leakage current, Cu2O films, temperature, semiconductor, contacts, epitaxy, copper, hemt
Research areas
Download statistics
ID: 1609673