Inverse propagation method for evaluation of super-resolution granted by dielectric microparticles

R. Heydarian*, C. Simovski

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

In this work we report a theoretical study of the lateral resolution granted by a simple glass microcylinder. In this 2D study, we had in mind the 3D analogue—a microsphere whose ability to form a deeply subwavelength and strongly magnified image of submicrometer objects has been known since 2011. Conventionally, the microscope in which such an image is observed is tuned to see the areas behind the microsphere. This corresponds to the location of the virtual source formed by the microsphere at a distance longer than the distance of the real source to the miscroscope. Recently, we theoretically found a new scenario of super-resolution, when the virtual source is formed in the wave beam transmitted through the microsphere. However, in this work we concentrated on the case when the super-resolution is achieved in the impractical imaging system, in which the microscope objective lens is replaced by a microlens located at a distance smaller than the Rayleigh range. The present paper theoretically answers an important question: Which scenario of far-field nanoimaging by a microsphere grants the finest spatial resolution at very large distances? We found that the novel scenario (corresponding to higher refractive indices) promises further enhancement of the resolution.

Original languageEnglish
Pages (from-to)1256-1266
Number of pages11
JournalJournal of the Optical Society of America A: Optics and Image Science, and Vision
Volume39
Issue number7
DOIs
Publication statusPublished - Jul 2022
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Inverse propagation method for evaluation of super-resolution granted by dielectric microparticles'. Together they form a unique fingerprint.

Cite this