Influence of three-dimensional weld undercut geometry on fatigue-effective stress

Research output: Contribution to journalArticleScientificpeer-review

Standard

Influence of three-dimensional weld undercut geometry on fatigue-effective stress. / Liinalampi, Sami; Romanoff, Jani; Remes, Heikki.

In: Welding in the World, Vol. 63, No. 2, 08.03.2019, p. 277-291.

Research output: Contribution to journalArticleScientificpeer-review

Harvard

APA

Vancouver

Author

Bibtex - Download

@article{4a221432d5aa4425adf8c822dfe38119,
title = "Influence of three-dimensional weld undercut geometry on fatigue-effective stress",
abstract = "With modern automated welding processes, such as laser-hybrid welding, it is possible to produce high-quality welds with good resistance to fatigue. However, although the overall quality of the weld may be good, the joints can still contain significant geometrical variation and geometrical imperfections at the weld notches. In previous research for thin laser-hybrid welded butt joints, small undercut-type imperfections were observed in both toe and root side. These imperfections are usually short along the weld direction and may not be visible when the geometry of the weld is examined. However, such imperfections work as local stress risers and may influence the fatigue strength significantly based on the weakest link principle. Severity of the local notch geometry is commonly analysed by the two-dimensional analyses, which assumes constant geometry in weld direction. This approach is conservative for short undercuts due to macro-support of the surrounding material. In this study, the difference between two-dimensional and three-dimensional stress analyses for short semi-elliptic undercuts is examined using stress averaging approach. The study utilises parametric notch models, where geometric parameters, such as notch length, depth, radius and opening angle, are varied to examine the difference for different undercut shapes.",
keywords = "Fatigue strength; weld undercut, Effective notch stress, Notch geometry, Three-dimensional",
author = "Sami Liinalampi and Jani Romanoff and Heikki Remes",
year = "2019",
month = "3",
day = "8",
doi = "10.1007/s40194-018-0658-7",
language = "English",
volume = "63",
pages = "277--291",
journal = "Welding in the World",
issn = "0043-2288",
number = "2",

}

RIS - Download

TY - JOUR

T1 - Influence of three-dimensional weld undercut geometry on fatigue-effective stress

AU - Liinalampi, Sami

AU - Romanoff, Jani

AU - Remes, Heikki

PY - 2019/3/8

Y1 - 2019/3/8

N2 - With modern automated welding processes, such as laser-hybrid welding, it is possible to produce high-quality welds with good resistance to fatigue. However, although the overall quality of the weld may be good, the joints can still contain significant geometrical variation and geometrical imperfections at the weld notches. In previous research for thin laser-hybrid welded butt joints, small undercut-type imperfections were observed in both toe and root side. These imperfections are usually short along the weld direction and may not be visible when the geometry of the weld is examined. However, such imperfections work as local stress risers and may influence the fatigue strength significantly based on the weakest link principle. Severity of the local notch geometry is commonly analysed by the two-dimensional analyses, which assumes constant geometry in weld direction. This approach is conservative for short undercuts due to macro-support of the surrounding material. In this study, the difference between two-dimensional and three-dimensional stress analyses for short semi-elliptic undercuts is examined using stress averaging approach. The study utilises parametric notch models, where geometric parameters, such as notch length, depth, radius and opening angle, are varied to examine the difference for different undercut shapes.

AB - With modern automated welding processes, such as laser-hybrid welding, it is possible to produce high-quality welds with good resistance to fatigue. However, although the overall quality of the weld may be good, the joints can still contain significant geometrical variation and geometrical imperfections at the weld notches. In previous research for thin laser-hybrid welded butt joints, small undercut-type imperfections were observed in both toe and root side. These imperfections are usually short along the weld direction and may not be visible when the geometry of the weld is examined. However, such imperfections work as local stress risers and may influence the fatigue strength significantly based on the weakest link principle. Severity of the local notch geometry is commonly analysed by the two-dimensional analyses, which assumes constant geometry in weld direction. This approach is conservative for short undercuts due to macro-support of the surrounding material. In this study, the difference between two-dimensional and three-dimensional stress analyses for short semi-elliptic undercuts is examined using stress averaging approach. The study utilises parametric notch models, where geometric parameters, such as notch length, depth, radius and opening angle, are varied to examine the difference for different undercut shapes.

KW - Fatigue strength; weld undercut

KW - Effective notch stress

KW - Notch geometry

KW - Three-dimensional

UR - http://www.scopus.com/inward/record.url?scp=85063252868&partnerID=8YFLogxK

U2 - 10.1007/s40194-018-0658-7

DO - 10.1007/s40194-018-0658-7

M3 - Article

VL - 63

SP - 277

EP - 291

JO - Welding in the World

JF - Welding in the World

SN - 0043-2288

IS - 2

ER -

ID: 31393360