Projects per year
Abstract
Bacterial cellulose (BC) has shown potential as a separation material. Herein, the performance of BC in pressure-driven separation is investigated as a function of incubation conditions and post-culture treatment. The pure water flux of never-dried BC (NDBC), was found to be 9 to 16 times higher than that for dried BC (DBC), in a pressure range of 0.25 to 2.5 bar. The difference in pressure response of NDBC and DBC was observed both in cross-flow filtration and capillary flow porometry experiments. DBC and NDBC were permeable to polymers with a hydrodynamic radius of ∼60 nm while protein retention was possible by introducing anionic surface charges on BC. The results of this work are expected to expand the development of BC-based filtration membranes, for instance towards the processing of biological fluids.
Original language | English |
---|---|
Article number | 117073 |
Number of pages | 9 |
Journal | Carbohydrate Polymers |
Volume | 251 |
Early online date | 16 Sept 2020 |
DOIs | |
Publication status | Published - 1 Jan 2021 |
MoE publication type | A1 Journal article-refereed |
Keywords
- bacterial cellulose
- nanocellulose
- filter
- pure water flux
- separation
- compression
Fingerprint
Dive into the research topics of 'Impact of incubation conditions and post-treatment on the properties of bacterial cellulose membranes for pressure-driven filtration'. Together they form a unique fingerprint.Projects
- 2 Finished
-
BioELCell: Bioproducts Engineered from Lignocelluloses: from plants and upcycling to next generation materials
Rojas, O. (Principal investigator)
30/07/2018 → 31/07/2023
Project: EU: ERC grants
-
FinnCERES: Competence Center for the Materials Bioeconomy: A Flagship for our Sustainable Future
Mäkelä, K. (Principal investigator)
01/05/2018 → 31/12/2022
Project: Academy of Finland: Other research funding
Equipment
-
OtaNano - Nanomicroscopy Center
Seitsonen, J. (Manager) & Rissanen, A. (Other)
OtaNanoFacility/equipment: Facility