Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industries

Patricia Nyamekye*, Saeed Rahimpour Golroudbary*, Heidi Piili, Andrzej Kraslawski, Pasi Luukka

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

33 Citations (Scopus)
222 Downloads (Pure)

Abstract

Additive manufacturing (AM) is a promising technology for designing complex metallic pieces for different sectors with resource and time effectiveness. Titanium (Ti) is an essential critical material for AM development. AM can produce intricate and cost-effective components with Ti alloys for the transportation sector which would not be possible with conventional manufacturing (CM) technologies. This study assesses the impact of AM on the life cycle of Ti and its alloys by using review (numerical data, case examples) and dynamics simulation modelling. This article quantifies potential environmental benefits and examines aspects related to using Ti alloys in the automotive and aerospace industries. Mass flow, energy consumption and related greenhouse gas (GHG) emissions are assessed by making a comparison between subcategories of AM including binder jetting (BJT), directed energy deposition (DED), electron beam-based powder bed fusion (EB-PBF), and laser-based powder bed fusion(L-PBF) and CM processes including forging, milling, machining, and die casting. The results show that the AM subcategories considered potentially reduce manufacturing phase energy consumption and GHG emissions except for L-PBF. The findings highlight that an inclusive consideration of all life cycle phases is needed to fully identify potential benefits of AM for industries. Also, the scenario analysis in this study proposes the opportunity for saving mass and minimizing energy consumption and GHG emissions by optimizing the structural design and manufacturing processes for Ti components.
Original languageEnglish
Article number100112
JournalAdvances in Industrial and Manufacturing Engineering
Volume6
Issue numberC
Early online date7 Jan 2023
DOIs
Publication statusPublished - May 2023
MoE publication typeA1 Journal article-refereed

Keywords

  • Titanium
  • Critical materials
  • Manufacturing technologies
  • Dynamics modelling
  • Environmental sustainability

Fingerprint

Dive into the research topics of 'Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industries'. Together they form a unique fingerprint.

Cite this