Hyperedge bundling: Data, source code, and precautions to modeling-accuracy bias to synchrony estimates

Sheng H. Wang*, Muriel Lobier, Felix Siebenhühner, Tuomas Puoliväli, Satu Palva, J. Matias Palva

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)

Abstract

It has not been well documented that MEG/EEG functional connectivity graphs estimated with zero-lag-free interaction metrics are severely confounded by a multitude of spurious interactions (SI), i.e., the false-positive “ghosts” of true interactions [1,2]. These SI are caused by the multivariate linear mixing between sources, and thus they pose a severe challenge to the validity of connectivity analysis. Due to the complex nature of signal mixing and the SI problem, there is a need to intuitively demonstrate how the SI are discovered and how they can be attenuated using a novel approach that we termed hyperedge bundling. Here we provide a dataset with software with which the readers can perform simulations in order to better understand the theory and the solution to SI. We include the supplementary material of [1] that is not directly relevant to the hyperedge bundling per se but reflects important properties of the MEG source model and the functional connectivity graphs. For example, the gyri of dorsal-lateral cortices are the most accurately modeled areas; the sulci of inferior temporal, frontal and the insula have the least modeling accuracy. Importantly, we found the interaction estimates are heavily biased by the modeling accuracy between regions, which means the estimates cannot be straightforwardly interpreted as the coupling between brain regions. This raise a red flag that the conventional method of thresholding graphs by estimate values is rather suboptimal: because the measured topology of the graph reflects the geometric property of source-model instead of the cortical interactions under investigation.

Original languageEnglish
Pages (from-to)262-275
Number of pages14
JournalData in Brief
Volume18
DOIs
Publication statusPublished - 1 Jun 2018
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Hyperedge bundling: Data, source code, and precautions to modeling-accuracy bias to synchrony estimates'. Together they form a unique fingerprint.

Cite this