Hydrology of Drained Peatland Forest: Numerical Experiment on the Role of Tree Stand Heterogeneity and Management

Research output: Contribution to journalArticleScientificpeer-review

Researchers

  • Leena Stenberg
  • Kersti Haahti
  • Hannu Hökkä
  • Samuli Launiainen
  • Mika Nieminen
  • Ari Laurén
  • Harri Koivusalo

Research units

  • Luke Natural Resources Institute Finland
  • University of Eastern Finland

Abstract

A prerequisite for sustainable peatland forestry is sufficiently low water table (WT) level for profitable tree production. This requires better understanding on controls and feedbacks between tree stand and its evapotranspiration, drainage network condition, climate, and WT levels. This study explores the role of spatial tree stand distribution in the spatiotemporal distribution of WT levels and site water balance. A numerical experiment was conducted by a three-dimensional (3-D) hydrological model (FLUSH) applied to a 0.5 ha peatland forest assuming (1) spatially uniform interception and transpiration, (2) interception and transpiration scaled with spatial distributions of tree crown and root biomass, and (3) the combination of spatially scaled interception and uniform transpiration. Site water balance and WT levels were simulated for two meteorologically contrasting years. Spatial variations in transpiration were found to control WT levels even in a forest with relatively low stand stem volume (<100 m3/ha). Forest management scenarios demonstrated how stand thinning and reduced drainage efficiency raised WT levels and increased the area and duration of excessively wet conditions having potentially negative economic (reduced tree growth) and environmental (e.g., methane emissions, phosphorus mobilization) consequences. In practice, silvicultural treatment manipulating spatial stand structure should be optimized to avoid emergence of wet spots.

Details

Original languageEnglish
Article number645
Number of pages19
JournalForests
Volume9
Issue number10
Publication statusPublished - 16 Oct 2018
MoE publication typeA1 Journal article-refereed

    Research areas

  • distributed hydrological modeling, drained peatland forest, spatial biomass distribution, water balance, water table depth

Download statistics

No data available

ID: 28852097