Abstract
In this study, we looked at the hydrogen evolution reaction on the doubly doped Ni3P2 terminated Ni2P surface. Two Ni atoms in the first three layers of the Ni2P surface model were exchanged with two transition metal atoms. We limited our investigation to combinations of Al, Co, and Fe based on their individual effectiveness as Ni2P dopants in our previous computational studies. The DFT calculated hydrogen adsorption free energy was employed as a predictor of the materials' catalytic HER activity. Our results indicate that the combination of Co and Fe dopants most improves the catalytic activity of the surface through the creation of multiple novel and active catalytic sites.
Original language | English |
---|---|
Pages (from-to) | 11538-11547 |
Number of pages | 10 |
Journal | Physical Chemistry Chemical Physics |
Volume | 23 |
Issue number | 19 |
Early online date | 28 Apr 2021 |
DOIs | |
Publication status | Published - 21 May 2021 |
MoE publication type | A1 Journal article-refereed |