Homogeneous nonequilibrium molecular dynamics method for heat transport and spectral decomposition with many-body potentials

Research output: Contribution to journalArticleScientificpeer-review


Research units

  • Bohai University
  • Loughborough University


The standard equilibrium Green-Kubo and nonequilibrium molecular dynamics (MD) methods for computing thermal transport coefficients in solids typically require relatively long simulation times and large system sizes. To this end, we revisit here the homogeneous nonequilibrium MD method by Evans [Phys. Lett. A 91, 457 (1982)PYLAAG0375-960110.1016/0375-9601(82)90748-4] and generalize it to many-body potentials that are required for more realistic materials modeling. We also propose a method for obtaining spectral conductivity and phonon mean-free path from the simulation data. This spectral decomposition method does not require lattice dynamics calculations and can find important applications in spatially complex structures. We benchmark the method by calculating thermal conductivities of three-dimensional silicon, two-dimensional graphene, and a quasi-one-dimensional carbon nanotube and show that the method is about one to two orders of magnitude more efficient than the Green-Kubo method. We apply the spectral decomposition method to examine the long-standing dispute over thermal conductivity convergence vs divergence in carbon nanotubes.


Original languageEnglish
Article number064308
Pages (from-to)1-9
Number of pages9
JournalPhysical Review B (Condensed Matter and Materials Physics)
Issue number6
Publication statusPublished - 28 Feb 2019
MoE publication typeA1 Journal article-refereed

    Research areas


Download statistics

No data available

ID: 32447031