Projects per year
Abstract
Fabricating electronic and optoelectronic devices by transferring pre-deposited metal electrodes has attracted considerable attention, owing to the improved device performance. However, the pre-deposited metal electrode typically involves complex fabrication procedures. Here, we introduce our facile electrode fabrication process which is free of lithography, lift-off, and reactive ion etching by directly press-transferring a single-walled carbon nanotube (SWCNT) film. We fabricated Schottky diodes for photodetector applications using dry-transferred SWCNT films as the transparent electrode to increase light absorption in photoactive MoS2 channels. The MoS2 flake vertically stacked with an SWCNT electrode can exhibit excellent photodetection performance with a responsivity of ∼2.01 × 103 A/W and a detectivity of ∼3.2 × 1012 Jones. Additionally, we carried out temperature-dependent current–voltage measurement and Fowler–Nordheim (FN) plot analysis to explore the dominant charge transport mechanism. The enhanced photodetection in the vertical configuration is found to be attributed to the FN tunneling and internal photoemission of charge carriers excited from indium tin oxide across the MoS2 layer. Our study provides a novel concept of using a photoactive MoS2 layer as a tunneling layer itself with a dry-transferred transparent SWCNT electrode for high-performance and energy-efficient optoelectronic devices.
Original language | English |
---|---|
Pages (from-to) | 4216-4225 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 15 |
Issue number | 3 |
DOIs | |
Publication status | Published - 25 Jan 2023 |
MoE publication type | A1 Journal article-refereed |
Keywords
- photodetector
- MoS2
- transferred electrode
- carbon nanotube film
- tunneling
Fingerprint
Dive into the research topics of 'Highly Sensitive MoS2 Photodetectors Enabled with a Dry-Transferred Transparent Carbon Nanotube Electrode'. Together they form a unique fingerprint.-
FAST: Ultrafast Data Production with Broadband Photodetectors for Active Hyperspectral Space Imaging
Sun, Z., Akkanen, S., Pajunpää, T., Cui, L., Nigmatulin, F. & Das, S.
01/01/2021 → 31/12/2023
Project: Academy of Finland: Other research funding
-
NOIMO: Novel optical isolators to continue Moore's law in photonics integration
01/09/2020 → 31/08/2024
Project: Academy of Finland: Other research funding
-
IPN-Bio: Integrated Photonic-Nano Technologies for Bioapplications
01/03/2020 → 31/08/2025
Project: EU: MC