High-pitched excitation generation for glottal vocoding in statistical parametric speech synthesis using a deep neural network

Lauri Juvela, Bajibabu Bollepalli, Manu Airaksinen, Paavo Alku

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

28 Citations (Scopus)

Abstract

Achieving high quality and naturalness in statistical parametric synthesis of female voices remains to be difficult despite recent advances in the study area. Vocoding is one such key element in all statistical speech synthesizers that is known to affect the synthesis quality and naturalness. The present study focuses on a special type of vocoding, glottal vocoders, which aim to parameterize speech based on modelling the real excitation of (voiced) speech, the glottal flow. More specifically, we compare three different glottal vocoders by aiming at improved synthesis naturalness of female voices. Two of the vocoders are previously known, both utilizing an old glottal inverse filtering (GIF) method in estimating the glottal flow. The third on, denoted as Quasi Closed Phase - Deep Neural Net (QCP-DNN), takes advantage of a recently proposed new GIF method that shows improved accuracy in estimating the glottal flow from high-pitched speech. Subjective listening tests conducted on an US English female voice show that the proposed QCP-DNN method gives significant improvement in synthetic naturalness compared to the two previously developed glottal vocoders.

Original languageEnglish
Title of host publicationIEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016
Subtitle of host publicationProceedings
PublisherIEEE
Pages5120-5124
Number of pages5
Volume2016-May
ISBN (Print)9781479999880
DOIs
Publication statusPublished - 18 May 2016
MoE publication typeA4 Article in a conference publication
EventIEEE International Conference on Acoustics, Speech, and Signal Processing - Shanghai, China
Duration: 20 Mar 201625 Mar 2016
Conference number: 41
http://www.icassp2016.org/

Publication series

NameProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISSN (Print)1520-6149
ISSN (Electronic)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
Abbreviated titleICASSP 2016
Country/TerritoryChina
CityShanghai
Period20/03/201625/03/2016
Internet address

Keywords

  • Deep neural network
  • Glottal inverse filtering
  • Glottal vocoder
  • QCP
  • Statistical parametric speech synthesis

Fingerprint

Dive into the research topics of 'High-pitched excitation generation for glottal vocoding in statistical parametric speech synthesis using a deep neural network'. Together they form a unique fingerprint.

Cite this