Projects per year
Abstract
Chitin nanofibrils (NCh, ∼10 nm lateral size) were produced under conditions that were less severe compared to those for other biomass-derived nanomaterials and used to formulate high internal phase Pickering emulsions (HIPPEs). Pre-emulsification followed by continuous oil feeding facilitated a "scaffold" with high elasticity, which arrested droplet mobility and coarsening, achieving edible oil-in-water emulsions with internal phase volume fraction as high as 88%. The high stabilization ability of rodlike NCh originated from the restricted coarsening, droplet breakage and coalescence upon emulsion formation. This was the result of (a) irreversible adsorption at the interface (wettability measurements by the captive bubble method) and (b) structuring in highly interconnected fibrillar networks in the continuous phase (rheology, cryo-SEM, and fluorescent microscopies). Because the surface energy of NCh can be tailored by pH (protonation of surface amino groups), emulsion formation was found to be pH-dependent. Emulsions produced at pH from 3 to 5 were most stable (at least for 3 weeks). Although at a higher pH NCh was dispersible and the three-phase contact angle indicated better interfacial wettability to the oil phase, the lower interdroplet repulsion caused coarsening at high oil loading. We further show the existence of a trade-off between NCh axial aspect and minimum NCh concentration to stabilize 88% oil-in-water HIPPEs: only 0.038 wt % (based on emulsion mass) NCh of high axial aspect was required compared to 0.064 wt % for the shorter one. The as-produced HIPPEs were easily textured by taking advantage of their elastic behavior and resilience to compositional changes. Hence, chitin-based HIPPEs were demonstrated as emulgel inks suitable for 3D printing (millimeter definition) via direct ink writing, e.g., for edible functional foods and ultralight solid foams displaying highly interconnected pores and for potential cell culturing applications.
Original language | English |
---|---|
Pages (from-to) | 11240-11251 |
Number of pages | 12 |
Journal | ACS Applied Materials and Interfaces |
Volume | 12 |
Issue number | 9 |
DOIs | |
Publication status | Published - 4 Mar 2020 |
MoE publication type | A1 Journal article-refereed |
Keywords
- chitin nanofibrils
- direct ink writing
- high internal phase emulsion
- material molding
- Pickering emulsions
- porous materials
Fingerprint
Dive into the research topics of 'High Internal Phase Oil-in-Water Pickering Emulsions Stabilized by Chitin Nanofibrils : 3D Structuring and Solid Foam'. Together they form a unique fingerprint.Projects
- 1 Finished
-
BioELCell: Bioproducts Engineered from Lignocelluloses: from plants and upcycling to next generation materials
Rojas, O. (Principal investigator), Abidnejad, R. (Project Member), Ajdary, R. (Project Member), Bhattarai, M. (Project Member), Zhu, Y. (Project Member), Zhao, B. (Project Member), Robertson, D. (Project Member), Reyes Torres, G. (Project Member), Johansson, L.-S. (Project Member), Greca, L. (Project Member), Klockars, K. (Project Member), Kämäräinen, T. (Project Member), Majoinen, J. (Project Member), Tardy, B. (Project Member), Dufau Mattos, B. (Project Member) & Ressouche, E. (Project Member)
30/07/2018 → 31/07/2023
Project: EU: ERC grants