Hierarchical Organization of Organic Dyes and Protein Cages into Photoactive Crystals

Joona Mikkilä, Eduardo Anaya-Plaza, Ville Liljeström, Jose R. Caston, Tomas Torres, Andres de la Escosura, Mauri A. Kostiainen

Research output: Contribution to journalArticleScientificpeer-review

54 Citations (Scopus)

Abstract

Phthalocyanines (Pc) are non-natural organic dyes with wide and deep impact in materials science, based on their intense absorption at the near-infrared (NIR), longlived fluorescence and high singlet oxygen (O-1(2)) quantum yields. However, Pcs tend to stack in buffer solutions, losing their ability to generate singlet oxygen, which limits their scope of application. Furthermore, Pcs are challenging to organize in crystalline structures. Protein cages, on the other hand, are very promising biological building blocks that can be used to organize different materials into crystalline nanostructures. Here, we combine both kinds of components into photoactive biohybrid crystals. Toward this end, a hierarchical organization process has been designed in which (a) a supramolecular complex is formed between octacationic zinc Pc (1) and a tetraanionic pyrene (2) derivatives, driven by electrostatic and pi-pi interactions, and (b) the resulting tetracationic complex acts as a molecular glue that binds to the outer surface anionic patches of the apoferritin (aFt) protein cage, inducing cocrystallization. The obtained ternary face-centered cubic (fcc) packed cocrystals, with diameters up to 100 mu m, retain the optical properties of the pristine dye molecules, such as fluorescence at 695 nm and efficient light-induced O-1(2) production. Considering that O-1(2) is utilized in important technologies such as photodynamic therapy (PDT), water treatments, diagnostic arrays and as an oxidant in organic synthesis, our results demonstrate a powerful methodology to create functional biohybrid systems with unprecedented long-range order. This approach should greatly aid the development of nanotechnology and biomedicine.

Original languageEnglish
Pages (from-to)1565-1571
Number of pages7
JournalACS Nano
Volume10
Issue number1
DOIs
Publication statusPublished - Jan 2016
MoE publication typeA1 Journal article-refereed

Keywords

  • singlet oxygen
  • phthalocyanine
  • ferritin
  • protein cage
  • self-assembly
  • crystal
  • WATER-SOLUBLE PHTHALOCYANINES
  • VIRUS-LIKE PARTICLES
  • NANOPARTICLE SUPERLATTICES
  • DRUG-DELIVERY
  • APOFERRITIN CRYSTALLIZATION
  • PYROCOCCUS-FURIOSUS
  • NUCLEUS STRUCTURE
  • SINGLET OXYGEN
  • HUMAN H
  • FERRITIN

Cite this