Hanbury-Brown and Twiss exchange and non-equilibrium-induced correlations in disordered, four-terminal graphene-ribbon conductor

Research output: Contribution to journalArticle


Research units

  • University of Würzburg
  • National Research University of Electronic Technology
  • RAS - Institute of Solid State Physics


We have investigated current-current correlations in a cross-shaped conductor made of graphene. The mean free path of charge carriers is on the order of the ribbon width which leads to a hybrid conductor where there is diffusive transport in the device arms while the central connection region displays near ballistic transport. Our data on auto and cross correlations deviate from the predictions of Landauer-Büttiker theory, and agreement can be obtained only by taking into account contributions from non-thermal electron distributions at the inlets to the semiballistic center, in which the partition noise becomes strongly modified. The experimental results display distinct Hanbury – Brown and Twiss (HBT) exchange correlations, the strength of which is boosted by the non-equilibrium occupation-number fluctuations internal to this hybrid conductor. Our work demonstrates that variation in electron coherence along atomically-thin, two-dimensional conductors has significant implications on their noise and cross correlation properties.


Original languageEnglish
Article number14952
Pages (from-to)1-10
JournalScientific Reports
Issue number1
Publication statusPublished - 1 Dec 2018
MoE publication typeA1 Journal article-refereed

Download statistics

No data available

ID: 28755646