Hölder quasicontinuity of Sobolev functions on metric spaces

Piotr Hajłasz*, Juha Kinnunen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

79 Citations (Scopus)

Abstract

We prove that every Sobolev function defined on a metric space coincides with a Holder continuous function outside a set of small Hausdorff content or capacity. Moreover, the Hölder continuous function can be chosen so that it approximates the given function in the Sobolev norm. This is a generalization of a result of Malý [Ma1] to the Sobolev spaces on metric spaces [H1].

Original languageEnglish
Pages (from-to)601-622
Number of pages22
JournalRevista Matematica Iberoamericana
Volume14
Issue number3
Publication statusPublished - 1998
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'Hölder quasicontinuity of Sobolev functions on metric spaces'. Together they form a unique fingerprint.

Cite this