Abstract
We prove that every Sobolev function defined on a metric space coincides with a Holder continuous function outside a set of small Hausdorff content or capacity. Moreover, the Hölder continuous function can be chosen so that it approximates the given function in the Sobolev norm. This is a generalization of a result of Malý [Ma1] to the Sobolev spaces on metric spaces [H1].
Original language | English |
---|---|
Pages (from-to) | 601-622 |
Number of pages | 22 |
Journal | Revista Matematica Iberoamericana |
Volume | 14 |
Issue number | 3 |
Publication status | Published - 1998 |
MoE publication type | A1 Journal article-refereed |