Abstract
The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6 ]3- precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of > 95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ~ .08 eV and show excellent thin-film transistor performance.
Original language | English |
---|---|
Article number | 11160 |
Pages (from-to) | 1-8 |
Journal | Nature Communications |
Volume | 7 |
DOIs | |
Publication status | Published - 30 Mar 2016 |
MoE publication type | A1 Journal article-refereed |