Projects per year
Abstract
All-optical control of nonlinear photonic processes in nanomaterials is of significant interest from a fundamental viewpoint and with regard to applications ranging from ultrafast data processing to spectroscopy and quantum technology. However, these applications rely on a high degree of control over the nonlinear response, which still remains elusive. Here, we demonstrate giant and broadband all-optical ultrafast modulation of second-harmonic generation (SHG) in monolayer transition-metal dichalcogenides mediated by the modified excitonic oscillation strength produced upon optical pumping. We reveal a dominant role of dark excitons to enhance SHG by up to a factor of ∼386 at room temperature, 2 orders of magnitude larger than the current state-of-the-art all-optical modulation results. The amplitude and sign of the observed SHG modulation can be adjusted over a broad spectral range spanning a few electronvolts with ultrafast response down to the sub-picosecond scale via different carrier dynamics. Our results not only introduce an efficient method to study intriguing exciton dynamics, but also reveal a new mechanism involving dark excitons to regulate all-optical nonlinear photonics.
Original language | English |
---|---|
Pages (from-to) | 2320-2328 |
Number of pages | 9 |
Journal | ACS Photonics |
Volume | 8 |
Issue number | 8 |
Early online date | 2021 |
DOIs | |
Publication status | Published - 18 Aug 2021 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Bright Excitons
- Dark Excitons
- Optically-Modulated Excitonic Strength
- Second-Harmonic Generation
- Transition Metal Dichalcogenides Monolayers
- Ultrafast Optical Modulation
Fingerprint
Dive into the research topics of 'Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons'. Together they form a unique fingerprint.-
FEMTOCHIP: FEMTOSECOND LASER ON A CHIP
Sun, Z., Li, D., Liu, P., Turunen, M., Das, S., Mohsen, A., Liapis, A. & Atalaia Rosa, J.
01/03/2021 → 29/02/2024
Project: EU: Framework programmes funding
-
FAST: Ultrafast Data Production with Broadband Photodetectors for Active Hyperspectral Space Imaging
Sun, Z., Akkanen, S., Pajunpää, T., Cui, L., Nigmatulin, F. & Das, S.
01/01/2021 → 31/12/2023
Project: Academy of Finland: Other research funding
-
NOIMO: Novel optical isolators to continue Moore's law in photonics integration
01/09/2020 → 31/08/2024
Project: Academy of Finland: Other research funding