Abstract
Digital trace data derived from organizations’ information systems represent a wealth of possibilities in analyzing decision-making processes and organizational performance. While data-mining methods have advanced considerably over recent years, organizational process research has rarely analyzed this type of trace data with the objective of better understanding organizations’ decision-making processes. However, accurately tracking decision-making actions via digital trace data can produce numerous applications that represent new and unexplored opportunities for IS research.
The paper presents a novel method developed to combine quantitative process mining approaches with a variance perspective. Its viability is demonstrated by looking at teams’ decision patterns from a dynamic business-simulation game. This exploratory data-driven method represents a promising starting point for translating complex raw process data into interesting research questions connected with dynamic decision-making environments.
The paper presents a novel method developed to combine quantitative process mining approaches with a variance perspective. Its viability is demonstrated by looking at teams’ decision patterns from a dynamic business-simulation game. This exploratory data-driven method represents a promising starting point for translating complex raw process data into interesting research questions connected with dynamic decision-making environments.
Original language | English |
---|---|
Article number | 12 |
Journal | Communications of the Association for Information Systems |
Volume | 51 |
Publication status | Published - 2022 |
MoE publication type | A1 Journal article-refereed |