Fronto-parietal network supports context-dependent speech comprehension

Research output: Contribution to journalArticleScientificpeer-review

Researchers

Research units

  • University of Turku

Abstract

Knowing the context of a discourse is an essential prerequisite for comprehension. Here we used functional magnetic resonance imaging (fMRI) to disclose brain networks supporting context-dependent speech comprehension. During fMRI, 20 participants listened to 1-min spoken narratives preceded by pictures that were either contextually matching or mismatching with the narrative. Matching pictures increased narrative comprehension, decreased hemodynamic activity in Broca׳s area, and enhanced its functional connectivity with left anterior superior frontal gyrus, bilateral inferior parietal cortex, as well as anterior and posterior cingulate cortex. Further, the anterior (BA 45) and posterior (BA 44) portions of Broca׳s area differed in their functional connectivity patterns. Both BA 44 and BA 45 have shown increased connectivity with right angular gyrus and supramarginal gyrus. Whereas BA 44 showed increased connectivity with left angular gyrus, left inferior/middle temporal gyrus and left postcentral gyrus, BA 45 showed increased connectivity with right posterior cingulate cortex, right anterior inferior frontal gyrus, lateral occipital cortex and anterior cingulate cortex. Our results suggest that a fronto-parietal functional network supports context-dependent narrative comprehension, and that Broca׳s area is involved in resolving ambiguity from speech when appropriate contextual cues are lacking.

Details

Original languageEnglish
Pages (from-to)293-303
Number of pages11
JournalNeuropsychologia
Volume63
Publication statusPublished - Oct 2014
MoE publication typeA1 Journal article-refereed

    Research areas

  • Broca׳s area, Wernicke׳s area, fMRI, PPI, ISC, Functional connectivity, Narrative, Speech comprehension

Download statistics

No data available

ID: 962664