Flue Dust Behaviour in FSF-Arsenic Condensation in Offgas Line Conditions

P. Taskinen*, X. Wan, D. Sukhomlinov

*Corresponding author for this work

Research output: Contribution to journalConference articleScientificpeer-review

13 Downloads (Pure)

Abstract

The suspension smelting oxidation step has favourable conditions to generate chemical flue dust from the low-boiling elements of the feed mixture due to the high particle temperatures in the reaction shaft where combusting sulphide mineral particles reach temperatures above the melting point of magnetite. Arsenic, antimony, lead, and zinc are common impurity elements of high volatility in copper concentrates. They tend to accumulate in the flue dust due to the high volatility and closed mode of the flue dust circulation practiced in most industrial smelting-converting processes. Then, the only outlets for the volatile impurities are the anodes and the discard slag. A separate flue dust treatment for impurity removal is an option but it creates an additional step for the smelting plant and cost in the processing. When the concentrate grades decrease, and their impurity levels rise this outlet for the trace elements may become necessary. The arsenic condensation mechanisms in dust-free conditions in the copper flash smelting process gas train have been recently studied in SO2-Air-N2 gas mixtures. It seems that the formation mechanism of arsenic-containing dust deposits is kinetically constrained, and their chemistries are influenced by the condensation temperature and atmosphere.

Original languageEnglish
Article number02001
Number of pages7
JournalE3S Web of Conferences
Volume543
DOIs
Publication statusPublished - 3 Jul 2024
MoE publication typeA4 Conference publication
EventInternational Process Metallurgy Conference - Bandung, Indonesia
Duration: 12 Sept 202313 Sept 2023

Fingerprint

Dive into the research topics of 'Flue Dust Behaviour in FSF-Arsenic Condensation in Offgas Line Conditions'. Together they form a unique fingerprint.

Cite this