Abstract
The use of polymer-surfactant mixtures as foam stabilization agents is a topic that has drawn the attention of several fields but has so far not be thoroughly studied in the context of mineral froth flotation. The present work showcases a study on the impact on flotation performance of cellulose surfactant derivatives and their mixtures with commercial frothers.
Bubble size and foam property measurements were run in a two-phase system along with laboratory-scale flotation experiments conducted using a porphyry copper ore from a mine in Finland. A comparative analysis on recovery, grade and flotation kinetics is presented on the products obtained using: i) a partially hydroxylated cellulose derivative (i.e. hydroxypropyl methyl cellulose; HPMC), ii) a commercial polyglycol-ester frother (Nasfroth240; NF240), and
iii) mixtures of these two.
The results show that using frothers with a total concentration of 30 ppm, the HPMC-NF240 mixtures provide advantages in terms of Cu recovery, (i.e., up to 95%), compared to the use of either NF240 (ca. 76%) or HPMC alone (ca. 1%). Interestingly, only a small proportion of HPMC mixed with NF240 was sufficient to produce a measurable increase in recovery. This improved performance was attributed to a synergistic effect of the polymer-surfactant mixture
which further reduced the bubble sizes in a two-phase system compared to that of NF240. The present work offers a further step into understanding the phenomena taking place when a short chained surfactant is either substituted or mixed with a cellulose derivative, offering potential ways of exploiting this behavior for the enrichment of minerals.
Bubble size and foam property measurements were run in a two-phase system along with laboratory-scale flotation experiments conducted using a porphyry copper ore from a mine in Finland. A comparative analysis on recovery, grade and flotation kinetics is presented on the products obtained using: i) a partially hydroxylated cellulose derivative (i.e. hydroxypropyl methyl cellulose; HPMC), ii) a commercial polyglycol-ester frother (Nasfroth240; NF240), and
iii) mixtures of these two.
The results show that using frothers with a total concentration of 30 ppm, the HPMC-NF240 mixtures provide advantages in terms of Cu recovery, (i.e., up to 95%), compared to the use of either NF240 (ca. 76%) or HPMC alone (ca. 1%). Interestingly, only a small proportion of HPMC mixed with NF240 was sufficient to produce a measurable increase in recovery. This improved performance was attributed to a synergistic effect of the polymer-surfactant mixture
which further reduced the bubble sizes in a two-phase system compared to that of NF240. The present work offers a further step into understanding the phenomena taking place when a short chained surfactant is either substituted or mixed with a cellulose derivative, offering potential ways of exploiting this behavior for the enrichment of minerals.
Original language | English |
---|---|
Number of pages | 13 |
Publication status | Published - 18 Aug 2019 |
MoE publication type | Not Eligible |
Event | Copper - Vancouver, Canada Duration: 18 Aug 2019 → 21 Aug 2019 |
Conference
Conference | Copper |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 18/08/2019 → 21/08/2019 |
Keywords
- Chalcopyrite
- Copper
- Flotation
- Frothers
- Green Chemistry
- Hydroxypropyl methyl cellulose
- Mineral processing
- Polymer-surfactant mixtures