Abstract
We provide a new criterion for flexibility of affine cones over varieties covered by flexible affine varieties. We apply this criterion to prove flexibility of affine cones over secant varieties of Segre-Veronese embeddings and over certain Fano threefolds. We further prove flexibility of total coordinate spaces of Cox rings of del Pezzo surfaces.
Original language | English |
---|---|
Pages (from-to) | 1457-1478 |
Number of pages | 22 |
Journal | MATHEMATISCHE ZEITSCHRIFT |
Volume | 290 |
Issue number | 3-4 |
DOIs | |
Publication status | Published - Dec 2018 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Automorphism group
- Transitivity
- Flexibility
- Affine cone
- Cox ring
- Segre-Veronese embedding
- Secant variety
- Del Pezzo surface
- DEL-PEZZO SURFACES
- TORUS ACTIONS
- COX RINGS
- INFINITE TRANSITIVITY
- POLYHEDRAL DIVISORS
- UNIVERSAL TORSORS
- COMPLEXITY ONE
- T-VARIETIES
- SINGULARITIES
- CLASSIFICATION