First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring

Kazunori Akiyama, Antxon Alberdi, Walter Alef, Juan Carlos Algaba, Richard Anantua, Keiichi Asada, Rebecca Azulay, Uwe Bach, Anne Kathrin Baczko, David Ball, Mislav Baloković, Bidisha Bandyopadhyay, John Barrett, Michi Bauböck, Bradford A. Benson, Dan Bintley, Lindy Blackburn, Raymond Blundell, Katherine L. Bouman, Geoffrey C. BowerHope Boyce, Michael Bremer, Christiaan D. Brinkerink, Roger Brissenden, Silke Britzen, Avery E. Broderick, Dominique Broguiere, Thomas Bronzwaer, Sandra Bustamante, Do Young Byun, John E. Carlstrom, Chiara Ceccobello, Andrew Chael, Chi Kwan Chan, Dominic O. Chang, Koushik Chatterjee, Shami Chatterjee, Ming Tang Chen, Yongjun Chen, Xiaopeng Cheng, Ilje Cho, Pierre Christian, Nicholas S. Conroy, Dong Jin Kim, Zhiyuan Li, Venkatessh Ramakrishnan, Tuomas Savolainen, Jan Wagner, Jasmin E. Washington, Kaj Wiik, Event Horizon Telescope Collaboration

Research output: Contribution to journalArticleScientificpeer-review

22 Downloads (Pure)

Abstract

The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A∗ (Sgr A∗), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M≈ 4 × 106 M. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A∗. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%°-10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication.

Original languageEnglish
Article numberL25
Pages (from-to)1-32
Number of pages32
JournalAstrophysical Journal Letters
Volume964
Issue number2
DOIs
Publication statusPublished - 1 Apr 2024
MoE publication typeA1 Journal article-refereed

Fingerprint

Dive into the research topics of 'First Sagittarius A∗ Event Horizon Telescope Results. VII. Polarization of the Ring'. Together they form a unique fingerprint.

Cite this