TY - JOUR
T1 - First-Principles Modeling of Point Defects and Complexes in Thin-Film Solar-Cell Absorber CuInSe2
AU - Malitckaya, Maria
AU - Komsa, Hannu Pekka
AU - Havu, Ville
AU - Puska, Martti J.
N1 - | openaire: EC/H2020/641004/EU//Sharc25
PY - 2017/6/1
Y1 - 2017/6/1
N2 - Point defects and complexes may affect significantly physical, optical, and electrical properties of semiconductors. The Cu(In,Ga)Se2 alloy is an absorber material for low-cost thin-film solar cells. Several recently published computational investigations show contradicting results for important point defects such as copper antisite substituting indium (CuIn), indium vacancy (VIn), and complexes of point defects in CuInSe2. In the present work effects of the most important computational parameters are studied especially on the formation energies of point defects. Moreover, related to defect identification by the help of their calculated properties possible explanations are discussed for the three acceptors, occuring in photoluminescence measurements of Cu-rich samples. Finally, new insight into comparison between theoretical and experimental results is presented in the case of varying chemical potentials and of formation of secondary phases.
AB - Point defects and complexes may affect significantly physical, optical, and electrical properties of semiconductors. The Cu(In,Ga)Se2 alloy is an absorber material for low-cost thin-film solar cells. Several recently published computational investigations show contradicting results for important point defects such as copper antisite substituting indium (CuIn), indium vacancy (VIn), and complexes of point defects in CuInSe2. In the present work effects of the most important computational parameters are studied especially on the formation energies of point defects. Moreover, related to defect identification by the help of their calculated properties possible explanations are discussed for the three acceptors, occuring in photoluminescence measurements of Cu-rich samples. Finally, new insight into comparison between theoretical and experimental results is presented in the case of varying chemical potentials and of formation of secondary phases.
KW - CuInSe
KW - density functional theory
KW - native point defects
KW - solar cells
UR - http://www.scopus.com/inward/record.url?scp=85013640703&partnerID=8YFLogxK
U2 - 10.1002/aelm.201600353
DO - 10.1002/aelm.201600353
M3 - Article
AN - SCOPUS:85013640703
SN - 2199-160X
VL - 3
SP - 1
EP - 9
JO - Advanced Electronic Materials
JF - Advanced Electronic Materials
IS - 6
M1 - 1600353
ER -