Projects per year
Abstract
Public sources like parliament meeting recordings and transcripts provide ever-growing material for the training and evaluation of automatic speech recognition (ASR) systems. In this paper, we publish and analyse the Finnish Parliament ASR Corpus, the most extensive publicly available collection of manually transcribed speech data for Finnish with over 3000 h of speech and 449 speakers for which it provides rich demographic metadata. This corpus builds on earlier initial work, and as a result the corpus has a natural split into two training subsets from two periods of time. Similarly, there are two official, corrected test sets covering different times, setting an ASR task with longitudinal distribution-shift characteristics. An official development set is also provided. We developed a complete Kaldi-based data preparation pipeline and ASR recipes for hidden Markov models (HMM), hybrid deep neural networks (HMM-DNN), and attention-based encoder-decoders (AED). For HMM-DNN systems, we provide results with time-delay neural networks (TDNN) as well as state-of-the-art wav2vec 2.0 pretrained acoustic models. We set benchmarks on the official test sets and multiple other recently used test sets. Both temporal corpus subsets are already large, and we observe that beyond their scale, HMM-TDNN ASR performance on the official test sets has reached a plateau. In contrast, other domains and larger wav2vec 2.0 models benefit from added data. The HMM-DNN and AED approaches are compared in a carefully matched equal data setting, with the HMM-DNN system consistently performing better. Finally, the variation of the ASR accuracy is compared between the speaker categories available in the parliament metadata to detect potential biases based on factors such as gender, age, and education.
Original language | English |
---|---|
Pages (from-to) | 1645-1670 |
Number of pages | 26 |
Journal | LANGUAGE RESOURCES AND EVALUATION |
Volume | 57 |
Issue number | 4 |
Early online date | 27 Mar 2023 |
DOIs | |
Publication status | Published - Dec 2023 |
MoE publication type | A1 Journal article-refereed |
Keywords
- AED
- Finnish
- HMM-DNN
- Metadata
- Parliament speech data
- Speech recognition
- Wav2vec
Fingerprint
Dive into the research topics of 'Finnish parliament ASR corpus: Analysis, benchmarks and statistics'. Together they form a unique fingerprint.-
USSEE: Understanding Speech and Scene with Ears and Eyes
Kurimo, M. (Principal investigator), Virkkunen, A. (Project Member) & Grósz, T. (Project Member)
01/01/2022 → 31/12/2024
Project: Academy of Finland: Other research funding
-
MeMAD: Methods for Managing Audiovisual Data: Combining Automatic Efficiency with Human Accuracy
Kurimo, M. (Principal investigator), Grönroos, S.-A. (Project Member), Brander, T. (Project Member), Porjazovski, D. (Project Member), Raitio, R. (Project Member), Grósz, T. (Project Member), Virkkunen, A. (Project Member) & Rouhe, A. (Project Member)
27/12/2017 → 31/03/2021
Project: EU: Framework programmes funding
Equipment
Press/Media
-
New Language Resources and Evaluation Findings Has Been Reported by Investigators at Aalto University (Finnish Parliament Asr Corpus Analysis, Benchmarks and Statistics)
Kurimo, M., Virkkunen, A., Rouhe, A. & Phan, N.
01/05/2023
1 item of Media coverage
Press/Media: Media appearance