Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation

Anurodh Tripathi, Gregory N. Parsons, Orlando J. Rojas, Saad A. Khan

Research output: Contribution to journalArticleScientificpeer-review

177 Downloads (Pure)

Abstract

A unique combination of well-established synthesis procedures involving chemical cross-linking, careful solvent exchange to water, and subsequent freeze drying is used to produce ultralight (4.3 mg/mL) and highly porous (99.7%) cellulose diacetate (CDA) aerogels with honeycomb morphology. This versatile synthesis approach is extended to other nonaqueous polymers with hydroxyl functionalities such as cellulose acetate propionate and cellulose acetate butyrate to produce a single component polymer aerogel. These aerogels demonstrate a maximum water and oil uptake of up to 92 and 112 g/g, respectively. The honeycomb morphology provides a maximum compression strain of 92% without failure and reaches a compressive stress of 350 kPa, for 4 w/v % CDA aerogels (4%), which is higher than that reported for cellulosic aerogels. The 4% CDA aerogel were rendered hydrophobic and oleophilic via chemical vapor deposition with organosilane. The modified CDA aerogel surpasses their counterparts in maintaining their mechanical integrity for fast oil cleanup and efficient oil retention from aqueous media under marine conditions. These aerogels are identified to be reusable and durable for a long period.
Original languageEnglish
Pages (from-to)4297-4305
JournalACS Omega
Volume2
Issue number8
DOIs
Publication statusPublished - Aug 2017
MoE publication typeA1 Journal article-refereed

Fingerprint Dive into the research topics of 'Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation'. Together they form a unique fingerprint.

  • Equipment

  • Cite this