Fast control of dissipation in a superconducting resonator

Research output: Contribution to journalArticle

Standard

Fast control of dissipation in a superconducting resonator. / Sevriuk, V. A.; Tan, K. Y.; Hyyppä, E.; Silveri, M.; Partanen, M.; Jenei, M.; Masuda, S.; Goetz, J.; Vesterinen, V.; Grönberg, L.; Möttönen, M.

In: Applied Physics Letters, Vol. 115, No. 8, 082601, 19.08.2019, p. 1-4.

Research output: Contribution to journalArticle

Harvard

Sevriuk, VA, Tan, KY, Hyyppä, E, Silveri, M, Partanen, M, Jenei, M, Masuda, S, Goetz, J, Vesterinen, V, Grönberg, L & Möttönen, M 2019, 'Fast control of dissipation in a superconducting resonator', Applied Physics Letters, vol. 115, no. 8, 082601, pp. 1-4. https://doi.org/10.1063/1.5116659

APA

Vancouver

Author

Sevriuk, V. A. ; Tan, K. Y. ; Hyyppä, E. ; Silveri, M. ; Partanen, M. ; Jenei, M. ; Masuda, S. ; Goetz, J. ; Vesterinen, V. ; Grönberg, L. ; Möttönen, M. / Fast control of dissipation in a superconducting resonator. In: Applied Physics Letters. 2019 ; Vol. 115, No. 8. pp. 1-4.

Bibtex - Download

@article{4f55c05375e3464ebe3442988646bab0,
title = "Fast control of dissipation in a superconducting resonator",
abstract = "We report on fast tunability of an electromagnetic environment coupled to a superconducting coplanar waveguide resonator. Namely, we utilize a recently developed quantum-circuit refrigerator (QCR) to experimentally demonstrate a dynamic tunability in the total damping rate of the resonator up to almost two orders of magnitude. Based on the theory, it corresponds to a change in the internal damping rate by nearly four orders of magnitude. The control of the QCR is fully electrical, with the shortest implemented operation times in the range of 10 ns. This experiment constitutes a fast active reset of a superconducting quantum circuit. In the future, a similar scheme can potentially be used to initialize superconducting quantum bits.",
author = "Sevriuk, {V. A.} and Tan, {K. Y.} and E. Hyypp{\"a} and M. Silveri and M. Partanen and M. Jenei and S. Masuda and J. Goetz and V. Vesterinen and L. Gr{\"o}nberg and M. M{\"o}tt{\"o}nen",
note = "| openaire: EC/H2020/681311/EU//QUESS | openaire: EC/H2020/795159/EU//NEQC | openaire: EC/H2020/820505/EU//QMiCS",
year = "2019",
month = "8",
day = "19",
doi = "10.1063/1.5116659",
language = "English",
volume = "115",
pages = "1--4",
journal = "Applied Physics Letters",
issn = "0003-6951",
number = "8",

}

RIS - Download

TY - JOUR

T1 - Fast control of dissipation in a superconducting resonator

AU - Sevriuk, V. A.

AU - Tan, K. Y.

AU - Hyyppä, E.

AU - Silveri, M.

AU - Partanen, M.

AU - Jenei, M.

AU - Masuda, S.

AU - Goetz, J.

AU - Vesterinen, V.

AU - Grönberg, L.

AU - Möttönen, M.

N1 - | openaire: EC/H2020/681311/EU//QUESS | openaire: EC/H2020/795159/EU//NEQC | openaire: EC/H2020/820505/EU//QMiCS

PY - 2019/8/19

Y1 - 2019/8/19

N2 - We report on fast tunability of an electromagnetic environment coupled to a superconducting coplanar waveguide resonator. Namely, we utilize a recently developed quantum-circuit refrigerator (QCR) to experimentally demonstrate a dynamic tunability in the total damping rate of the resonator up to almost two orders of magnitude. Based on the theory, it corresponds to a change in the internal damping rate by nearly four orders of magnitude. The control of the QCR is fully electrical, with the shortest implemented operation times in the range of 10 ns. This experiment constitutes a fast active reset of a superconducting quantum circuit. In the future, a similar scheme can potentially be used to initialize superconducting quantum bits.

AB - We report on fast tunability of an electromagnetic environment coupled to a superconducting coplanar waveguide resonator. Namely, we utilize a recently developed quantum-circuit refrigerator (QCR) to experimentally demonstrate a dynamic tunability in the total damping rate of the resonator up to almost two orders of magnitude. Based on the theory, it corresponds to a change in the internal damping rate by nearly four orders of magnitude. The control of the QCR is fully electrical, with the shortest implemented operation times in the range of 10 ns. This experiment constitutes a fast active reset of a superconducting quantum circuit. In the future, a similar scheme can potentially be used to initialize superconducting quantum bits.

UR - http://www.scopus.com/inward/record.url?scp=85071243327&partnerID=8YFLogxK

U2 - 10.1063/1.5116659

DO - 10.1063/1.5116659

M3 - Article

VL - 115

SP - 1

EP - 4

JO - Applied Physics Letters

JF - Applied Physics Letters

SN - 0003-6951

IS - 8

M1 - 082601

ER -

ID: 36632253