Projects per year
Abstract
Objective. Neural interfaces need to become more unobtrusive and socially acceptable to appeal to general consumers outside rehabilitation settings.Approach. We developed a non-invasive neural interface that provides access to spinal motor neuron activities from the wrist, which is the preferred location for a wearable. The interface decodes far-field potentials present at the tendon endings of the forearm muscles using blind source separation. First, we evaluated the reliability of the interface to detect motor neuron firings based on far-field potentials, and thereafter we used the decoded motor neuron activity for the prediction of finger contractions in offline and real-time conditions.Main results. The results showed that motor neuron activity decoded from the far-field potentials at the wrist accurately predicted individual and combined finger commands and therefore allowed for highly accurate real-time task classification.Significance.These findings demonstrate the feasibility of a non-invasive, neural interface at the wrist for precise real-time control based on the output of the spinal cord.
Original language | English |
---|---|
Article number | 026031 |
Number of pages | 16 |
Journal | JOURNAL OF NEURAL ENGINEERING |
Volume | 19 |
Issue number | 2 |
DOIs | |
Publication status | Published - 5 Apr 2022 |
MoE publication type | A1 Journal article-refereed |
Keywords
- far-field potentials
- motor neurons
- neural interface
- real-time decomposition
- wrist
Fingerprint
Dive into the research topics of 'Far-field electric potentials provide access to the output from the spinal cord from wrist-mounted sensors'. Together they form a unique fingerprint.Projects
- 1 Active
-
Hi-Fi BiNDIng: High-Fidelity Bidirectional Neural Drive Interfacing - Framework for investigating and restoration of human upper limb sensory/motor function
Vujaklija, I., Liu, J., Lam, W. & Taleshi, M.
01/09/2020 → 31/08/2024
Project: Academy of Finland: Other research funding