Facile preparation of cellulose nanofiber derived carbon and reduced graphene oxide co-supported LiFePO4 nanocomposite as enhanced cathode material for lithium-ion battery

Seungman Park, Jiseop Oh, Jong Min Kim, Valentina Guccini, Taejin Hwang, Youngmoo Jeon, German Salazar-Alvarez*, Yuanzhe Piao*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

Abstract

In this work, cellulose nanofiber (CNF) derived carbon and reduced graphene oxide co-supported lithium iron phosphate (LiFePO4, LFP) nanocomposite was prepared by thoroughly mixing CNF with LFP first, followed by mixing again with graphene oxide (GO) to make well dispersed LFP nanoparticles anchored on graphene oxide, finally heating under an inert atmosphere. The ultrathin CNF was used as not only a carbon source but also an adhesive agent which can attach the LFP nanoparticles to the graphene sheets. The LFP nanoparticles were tightly attached to graphene sheets due to the hydrogen bond between GO and CNF. This nanocomposite exhibited good rate performance (discharge capacity of 168.9 mA h g−1 at 0.1C, and 90.3 mA h g−1 at 60C) and long-term cycle stability (~ 91.5% of initial capacity at 10C after 500 cycles) as cathode material for LIBs. The good rate and cycling performances could be attributed to the well-connected electron pathway derived from strongly adhering the LFP nanoparticles to reduced graphene oxide (rGO) and the facilitate electron transportation derived from carbonized CNF (cCNF) conductive network. The introduction of cCNF to LFP/rGO nanocomposite can be a promising strategy for further improve the performance of LFP cathode in LIBs.

Original languageEnglish
Article number136707
JournalElectrochimica Acta
Volume354
DOIs
Publication statusPublished - 10 Sep 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • Cellulose nanofiber derived carbon
  • Graphene oxide
  • LiFePO nanoparticle
  • Lithium-ion battery
  • Reduced graphene oxide

Fingerprint Dive into the research topics of 'Facile preparation of cellulose nanofiber derived carbon and reduced graphene oxide co-supported LiFePO<sub>4</sub> nanocomposite as enhanced cathode material for lithium-ion battery'. Together they form a unique fingerprint.

  • Cite this