Abstract
Here, we report the fabrication of the unique intertwined Ni9 S8 /Ag2 S composite structure with hexagonal shape from their molecular precursors by one-pot thermal decomposition. Various spectroscopic and microscopic techniques were utilized to confirm the Ni9 S8 /Ag2 S intertwined structure. Powder X-ray Powder Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis suggest that there is an enrichment of Ni9 S8 phase in Ni9 S8 /Ag2 S. The presence of Ag2 S in Ni9 S8 /Ag2 S improves the conductivity by reducing the interfacial energy and charge transfer resistance. When Ni9 S8 /Ag2 S is employed as an electrocatalyst for electrochemical oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity, it requires a low overpotential of 152 mV for HER and 277 mV for OER to obtain the geometrical current density of 10 mA cm-2 , which is definitely superior to that of its components Ni9 S8 and Ag2 S. This work provides a simple design route to develop an efficient and durable electrocatalyst with outstanding OER and HER performance and the present catalyst (Ni9 S8 /Ag2 S) deserves as a potential candidate in the field of energy conversion systems.
Original language | English |
---|---|
Article number | 202200320 |
Pages (from-to) | e202200320 |
Journal | ChemPlusChem |
Volume | 88 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2023 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Electrocatalysis
- hydrogen evolution reaction
- interfacial charge transfer
- oxygen evolution reaction
- sulfides
Fingerprint
Dive into the research topics of 'Facile Fabrication of Ni9 S8 /Ag2 S Intertwined Structures for Oxygen and Hydrogen Evolution Reactions'. Together they form a unique fingerprint.Equipment
-
-
OtaNano - Nanomicroscopy Center
Seitsonen, J. (Manager) & Rissanen, A. (Other)
OtaNanoFacility/equipment: Facility