Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol sebacate)/Nanoparticle-Based Composite Patch for Myocardial Infarction Applications

Research output: Contribution to journalArticleScientificpeer-review


Research units

  • University of Helsinki
  • University of Turku
  • University of British Columbia


Heart tissue engineering is critical in the treatment of myocardial infarction, which may benefit from drug-releasing smart materials. In this study, we load a small molecule (3i-1000) in new biodegradable and conductive patches for application in infarcted myocardium. The composite patches consist of a biocompatible elastomer, poly(glycerol sebacate) (PGS), coupled with collagen type I, used to promote cell attachment. In addition, polypyrrole is incorporated because of its electrical conductivity and to induce cell signaling. Results from the in vitro experiments indicate a high density of cardiac myoblast cells attached on the patches, which stay viable for at least 1 month. The degradation of the patches does not show any cytotoxic effect, while 3i-1000 delivery induces cell proliferation. Conductive patches show high blood wettability and drug release, correlating with the rate of degradation of the PGS matrix. Together with the electrical conductivity and elongation characteristics, the developed biomaterial fits the mechanical, conductive, and biological demands required for cardiac treatment.


Original languageEnglish
Pages (from-to)6899-6909
Number of pages11
JournalACS applied materials & interfaces
Issue number6
Publication statusPublished - 12 Feb 2020
MoE publication typeA1 Journal article-refereed

    Research areas

  • conductive polymers, drug delivery, heart tissue engineering, polypyrrole, regeneration

ID: 41302638