Abstract
From a visual-perception perspective, modern graphical user interfaces (GUIs) comprise a complex graphics-rich two-dimensional visuospatial arrangement of text, images, and interactive objects such as buttons and menus. While existing models can accurately predict regions and objects that are likely to attract attention “on average”, no scanpath model has been capable of predicting scanpaths for an individual. To close this gap, we introduce EyeFormer, which utilizes a Transformer architecture as a policy network to guide a deep reinforcement learning algorithm that predicts gaze locations. Our model offers the unique capability of producing personalized predictions when given a few user scanpath samples. It can predict full scanpath information, including fixation positions and durations, across individuals and various stimulus types. Additionally, we demonstrate applications in GUI layout optimization driven by our model.
Original language | English |
---|---|
Title of host publication | Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology |
Place of Publication | New York |
Publisher | ACM |
Number of pages | 15 |
ISBN (Electronic) | 9798400706288 |
ISBN (Print) | 979-8-4007-0628-8 |
DOIs | |
Publication status | Published - 13 Oct 2024 |
MoE publication type | A4 Conference publication |
Event | ACM Symposium on User Interface Software and Technology - Pittsburgh, United States Duration: 13 Oct 2024 → 16 Oct 2024 Conference number: 37 |
Publication series
Name | UIST '24 |
---|---|
Publisher | Association for Computing Machinery |
Conference
Conference | ACM Symposium on User Interface Software and Technology |
---|---|
Abbreviated title | UIST |
Country/Territory | United States |
City | Pittsburgh |
Period | 13/10/2024 → 16/10/2024 |