Extraction of thickness and water content gradients in hydrogel-based, water-backed corneal phantoms via submillimeter wave reflectometry

Aleksi Tamminen, Mariangela Baggio, Irina Nefedova, Qiushuo Sun, Semyon Presnyakov, Juha Ala-laurinaho, Elliot Brown, Vincent Wallace, Emma Macpherson, Thaddeus Maloney, Natalia Kravchenko, Mika Salkola, Sophie Deng, Zachary Taylor

Research output: Contribution to journalArticleScientificpeer-review

1 Downloads (Pure)


Absolute thickness and free water content gradients in gelatin-based corneal phantoms with physiologically accurate radii of curvature, and aqueous backing were extracted via coherent submillimeter wave reflectometry at 220 330 GHz. Fourier-domain based calibration methods, utilizing temporal and spatial gating, were developed and yielded peak-to-peak amplitude and phase clutter of 10-3 and 0.1, respectively for signal to noise ratios between 40 dB and 50 dB. Twelve phantoms were fabricated. Calibration methods enabled quantification of target sphericity that strongly correlated with optical coherence tomography-based sphericity metrics via image segmentation. Extracted free water volume fraction varied less than 5 % in the 5 phantoms whose fabrication yielded the most spherical geometry. Submillimeter wave-based thickness accuracy was better than 111 m (~/9) with average of 65 m (~/17) and standard deviation of 44 m (~/25) for phantoms with physiologically relevant geometry. Monte Carlo simulations of measurement noise and uncertainty limits agree with experimental data analysis and indicates a lower thickness accuracy limit of 33 m, and water content sensitivities of 0.5 % and 11.8 % for the anterior and posterior segments respectively. Numerical analysis suggests measurement fidelity was SNR limited and identified optical path length ambiguities within the cornea where a continuum of thickness/water gradient pairs produce statistically insignificant differences in complex reflection coefficient for finite SNR. This is the first known submillimeter-wave measurement technique able to extract both the thickness and water content gradients from a soft-tissue phantom, with a water backing, without the need for ancillary measurements.

Original languageEnglish
Number of pages11
JournalIEEE Transactions on Terahertz Science and Technology
Publication statusE-pub ahead of print - 2021
MoE publication typeA1 Journal article-refereed


  • Cornea
  • Corneal phantom
  • gelatin hydrogel
  • Optical device fabrication
  • Optical imaging
  • Optical reflection
  • optical-coherence tomography
  • Phantoms
  • Reflectivity
  • submillimeter-wave spectroscopy
  • Thickness measurement


Dive into the research topics of 'Extraction of thickness and water content gradients in hydrogel-based, water-backed corneal phantoms via submillimeter wave reflectometry'. Together they form a unique fingerprint.

Cite this