Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit

Research output: Contribution to journalArticle

Standard

Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit. / Danilin, S.; Vepsäläinen, A.; Paraoanu, G. S.

In: Physica Scripta, Vol. 93, No. 5, 055101, 26.03.2018, p. 1-9.

Research output: Contribution to journalArticle

Harvard

APA

Vancouver

Author

Bibtex - Download

@article{2fca406265c7454e96c2bc188f0de8a2,
title = "Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit",
abstract = "Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the (|0},|2}) subspace of a three-level (qutrit) transmon device fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the (|0}, |2}) subspace.",
keywords = "non-adiabatic geometric gates, quantum state manipulation, three-level superconducting quantum circuits",
author = "S. Danilin and A. Veps{\"a}l{\"a}inen and Paraoanu, {G. S.}",
year = "2018",
month = "3",
day = "26",
doi = "10.1088/1402-4896/aab084",
language = "English",
volume = "93",
pages = "1--9",
journal = "Physica Scripta",
issn = "0031-8949",
number = "5",

}

RIS - Download

TY - JOUR

T1 - Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit

AU - Danilin, S.

AU - Vepsäläinen, A.

AU - Paraoanu, G. S.

PY - 2018/3/26

Y1 - 2018/3/26

N2 - Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the (|0},|2}) subspace of a three-level (qutrit) transmon device fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the (|0}, |2}) subspace.

AB - Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the (|0},|2}) subspace of a three-level (qutrit) transmon device fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the (|0}, |2}) subspace.

KW - non-adiabatic geometric gates

KW - quantum state manipulation

KW - three-level superconducting quantum circuits

UR - http://www.scopus.com/inward/record.url?scp=85046946181&partnerID=8YFLogxK

U2 - 10.1088/1402-4896/aab084

DO - 10.1088/1402-4896/aab084

M3 - Article

VL - 93

SP - 1

EP - 9

JO - Physica Scripta

JF - Physica Scripta

SN - 0031-8949

IS - 5

M1 - 055101

ER -

ID: 21611332