Experimental investigation of the velocity distribution of the attached plane jet after impingement with the corner in a high room

Guangyu Cao*, Mika Ruponen, Jarek Kurnitski

*Corresponding author for this work

    Research output: Contribution to journalArticleScientificpeer-review

    14 Citations (Scopus)

    Abstract

    Supplying air into rooms properly without causing a sensation of draught is a challenging task. Airflow patterns and the air velocity of attached plane jets should be predicted and designed accurately before the airflow enters an occupied zone in different applications. The objective of this study is to identify the airflow patterns of attached plane jets and set up an efficient model to predict the maximum jet velocity decay of an attached plane jet after its impingement with the corner in a high room. A full-scale test chamber was used to measure the jet velocity with a plane jet supply device. The attached plane jet is bounded initially by the ceiling and the insulated wall after being discharged from the jet slot. Three velocities from the slot, 0.5, 1.0, and 2.0 m/s, are used as the initial jet velocities with three Reynolds numbers, 1000, 2000, and 4000, respectively. The results show that the behaviours of the attached plane jet differ from earlier studies carried out in a relatively low room. The virtual origin model setup in this study can be used to predict the maximum jet velocity decay for jet flow design with impingement in the corners of rooms.

    Original languageEnglish
    Pages (from-to)935-944
    Number of pages10
    JournalEnergy and Buildings
    Volume42
    Issue number6
    DOIs
    Publication statusPublished - Jun 2010
    MoE publication typeA1 Journal article-refereed

    Keywords

    • Attached plane jet
    • Impinging
    • Model
    • Reynolds number
    • Turbulence intensity
    • Velocity

    Fingerprint

    Dive into the research topics of 'Experimental investigation of the velocity distribution of the attached plane jet after impingement with the corner in a high room'. Together they form a unique fingerprint.

    Cite this