Experimental Determination of Dynamical Lee-Yang Zeros
Research output: Contribution to journal › Article › Scientific › peer-review
Researchers
Research units
- University of Nottingham
Abstract
Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros - complex singularities of the free energy in systems of finite size - have led to a unified understanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize nonequilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such nonequilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.
Details
Original language | English |
---|---|
Article number | 180601 |
Pages (from-to) | 1-6 |
Journal | Physical Review Letters |
Volume | 118 |
Issue number | 18 |
Publication status | Published - 4 May 2017 |
MoE publication type | A1 Journal article-refereed |
Download statistics
ID: 13313234