Experimental and Computational Study Toward Identifying Active Sites of Supported SnOx Nanoparticles for Electrochemical CO2 Reduction Using Machine-Learned Interatomic Potentials

Junjie Shi, Paulina Pršlja*, Benjin Jin, Milla Suominen, Jani Sainio, Hua Jiang, Nana Han, Daria Robertson, Janez Košir, Miguel Caro, Tanja Kallio*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

98 Downloads (Pure)

Abstract

SnOx has received great attention as an electrocatalyst for CO2 reduction reaction (CO2RR), however; it still suffers from low activity. Moreover, the atomic-level SnOx structure and the nature of the active sites are still ambiguous due to the dynamism of surface structure and difficulty in structure characterization under electrochemical conditions. Herein, CO2RR performance is enhanced by supporting SnO2 nanoparticles on two common supports, vulcan carbon and TiO2. Then, electrolysis of CO2 at various temperatures in a neutral electrolyte reveals that the application window for this catalyst is between 12 and 30 °C. Furthermore, this study introduces a machine learning interatomic potential method for the atomistic simulation to investigate SnO2 reduction and establish a correlation between SnOx structures and their CO2RR performance. In addition, selectivity is analyzed computationally with density functional theory simulations to identify the key differences between the binding energies of *H and *CO2, where both are correlated with the presence of oxygen on the nanoparticle surface. This study offers in-depth insights into the rational design and application of SnOx-based electrocatalysts for CO2RR.

Original languageEnglish
Article number2402190
Number of pages11
JournalSmall
Volume20
Issue number40
Early online date25 May 2024
DOIs
Publication statusPublished - 3 Oct 2024
MoE publication typeA1 Journal article-refereed

Keywords

  • CO reduction reaction
  • machine learned interatomic potential
  • supported SnO nanoparticles
  • temperature effect

Fingerprint

Dive into the research topics of 'Experimental and Computational Study Toward Identifying Active Sites of Supported SnOx Nanoparticles for Electrochemical CO2 Reduction Using Machine-Learned Interatomic Potentials'. Together they form a unique fingerprint.

Cite this