Existence and nonexistence results for anisotropic p-Laplace equation with singular nonlinearities

Prashanta Garain*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
19 Downloads (Pure)

Abstract

Let pi≥ 2 and consider the following anisotropic p-Laplace equation −∑Ni=1∂∂xi(∣∣∂u∂xi∣∣pi−2∂u∂xi)=g(x)f(u),u>0 in Ω. Under suitable hypothesis on the weight function g we present an existence result for f(u)=e1u in a bounded smooth domain Ω and nonexistence results for f(u)=−e1u or −(u−δ+u−γ), δ,γ>0 with Ω=RN respectively.

Original languageEnglish
Pages (from-to)2055-2075
Number of pages21
JournalComplex Variables and Elliptic Equations
Volume66
Issue number12
DOIs
Publication statusPublished - 5 Aug 2020
MoE publication typeA1 Journal article-refereed

Keywords

  • T
  • Bartsch
  • Anisotropicp-Laplacian
  • existence
  • nonexistence
  • stable solution
  • STABLE-SOLUTIONS

Fingerprint

Dive into the research topics of 'Existence and nonexistence results for anisotropic p-Laplace equation with singular nonlinearities'. Together they form a unique fingerprint.

Cite this