Projects per year
Abstract
The forest reflectance and transmittance model (FRT) is applicable over a wide swath of boreal forest landscapes mainly because its stand-specific inputs can be generated from standard forest inventory variables. We quantified the accuracy of this model over an extensive region for the first time. This was done by carrying out a simulation study over a large number (12,369) of georeferenced forest plots from operational forest management inventories conducted in Southern Finland. We compared the FRT simulated bidirectional reflectance factors (BRF) with those measured by Landsat 8 satellite Operational Land Imager (OLI). We also quantified the relative importance of several explanatory factors that affected the magnitude of the discrepancy between the measured and simulated BRFs using a linear mixed effects modelling framework. A general trend of FRT overestimating BRFs is seen across all tree species and spectral bands examined: up to ∼0.05 for the red band, and ∼0.10 for the near infrared band. The important explanatory factors associated with the overestimations included the dominant tree species, understory type of the forest plot, timber volume (acts as a proxy for stand maturity), vegetation heterogeneity and time of the year. Our analysis suggests that approximately 20% of the error is caused by the non-representative spectra of canopy foliage and understory. Our results demonstrate the importance of collecting representative spectra from a diverse set of forest stands, and over the full range of seasons.
Original language | English |
---|---|
Article number | 100098 |
Number of pages | 13 |
Journal | Science of Remote Sensing |
Volume | 8 |
DOIs | |
Publication status | Published - Dec 2023 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Boreal forests
- Landsat
- Mixed models
- Model validation
- Radiative transfer modeling
- Reflectance
Fingerprint
Dive into the research topics of 'Evaluation of a forest radiative transfer model using an extensive boreal forest inventory database'. Together they form a unique fingerprint.-
ARTISDIG: Artificial Intelligence for Twinning the Diversity, Productivity and Spectral Signature of Forests
Rautiainen, M., Mercier, A. & Rönkkö, J.
EU The Recovery and Resilience Facility (RRF)
01/01/2022 → 31/12/2024
Project: Academy of Finland: Other research funding
-
FREEDLES: From needles to landscapes: a novel approach to scaling forest spectra
Rautiainen, M., Hovi, A., Juola, J., Mercier, A., Salko, S., Rönkkö, J., Karlqvist, S. & Schraik, D.
01/05/2018 → 30/04/2024
Project: EU: ERC grants
Equipment
-
Spectral lab (i3)
Miina Rautiainen (Manager)
Department of Built EnvironmentFacility/equipment: Facility
Press/Media
-
New Findings in Remote Sensing Described from University of Eastern Finland (Evaluation of a forest radiative transfer model using an extensive boreal forest inventory database)
12/12/2023
1 item of Media coverage
Press/Media: Media appearance