Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images

L. Bisigello*, C. J. Conselice, M. Baes, M. Bolzonella, M. Brescia, S. Cavuoti, O. Cucciati, A. Humphrey, L. K. Hunt, C. Maraston, L. Pozzetti, C. Tortora, S. E. van Mierlo, N. Aghanim, N. Auricchio, M. Baldi, R. Bender, C. Bodendorf, D. Bonino, E. BranchiniJ. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, F. J. Castander, M. Castellano, A. Cimatti, G. Congedo, L. Conversi, Y. Copin, L. Corcione, F. Courbin, M. Cropper, A. Da Silva, H. Degaudenzi, M. Douspis, F. Dubath, C. A.J. Duncan, X. Dupac, S. Dusini, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, S. M. Niemi, P. Schneider, Y. Wang, G. Gozaliasl, A. G. Sánchez, Euclid Collaboration

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

18 Citations (Scopus)

Fingerprint

Dive into the research topics of 'Euclid preparation – XXIII. Derivation of galaxy physical properties with deep machine learning using mock fluxes and H-band images'. Together they form a unique fingerprint.

Physics