# Ergodicity and local limits for stochastic local and nonlocal *p*-Laplace equations

Research output: Contribution to journal › Article › Scientific › peer-review

### Standard

**Ergodicity and local limits for stochastic local and nonlocal p-Laplace equations.** / Gess, Benjamin; Tölle, Jonas.

Research output: Contribution to journal › Article › Scientific › peer-review

### Harvard

*p*-Laplace equations',

*SIAM Journal on Mathematical Analysis*, vol. 48, no. 6, pp. 4094-4125. https://doi.org/10.1137/15M1049774

### APA

*p*-Laplace equations.

*SIAM Journal on Mathematical Analysis*,

*48*(6), 4094-4125. https://doi.org/10.1137/15M1049774

### Vancouver

*p*-Laplace equations. SIAM Journal on Mathematical Analysis. 2016 Dec 8;48(6):4094-4125. https://doi.org/10.1137/15M1049774

### Author

### Bibtex - Download

}

### RIS - Download

TY - JOUR

T1 - Ergodicity and local limits for stochastic local and nonlocal p-Laplace equations

AU - Gess, Benjamin

AU - Tölle, Jonas

PY - 2016/12/8

Y1 - 2016/12/8

N2 - Ergodicity for local and nonlocal stochastic singular $p$-Laplace equations is proven, without restriction on the spatial dimension and for all $p\in[1,2)$. This generalizes previous results from [B. Gess and J. M. Tölle, J. Math. Pures Appl., 101 (2014), pp. 789--827], [W. Liu and J. M. Tölle, Electron. Commun. Probab., 16 (2011), pp. 447--457], [W. Liu, J. Evol. Equations, 9 (2009), pp. 747--770]. In particular, the results include the multivalued case of the stochastic (nonlocal) total variation flow, which solves an open problem raised in [V. Barbu, G. Da Prato, and M. Röckner, SIAM J. Math. Anal., 41 (2009), pp. 1106--1120]. Moreover, under appropriate rescaling, the convergence of the unique invariant measure for the nonlocal stochastic $p$-Laplace equation to the unique invariant measure of the local stochastic $p$-Laplace equation is proven.

AB - Ergodicity for local and nonlocal stochastic singular $p$-Laplace equations is proven, without restriction on the spatial dimension and for all $p\in[1,2)$. This generalizes previous results from [B. Gess and J. M. Tölle, J. Math. Pures Appl., 101 (2014), pp. 789--827], [W. Liu and J. M. Tölle, Electron. Commun. Probab., 16 (2011), pp. 447--457], [W. Liu, J. Evol. Equations, 9 (2009), pp. 747--770]. In particular, the results include the multivalued case of the stochastic (nonlocal) total variation flow, which solves an open problem raised in [V. Barbu, G. Da Prato, and M. Röckner, SIAM J. Math. Anal., 41 (2009), pp. 1106--1120]. Moreover, under appropriate rescaling, the convergence of the unique invariant measure for the nonlocal stochastic $p$-Laplace equation to the unique invariant measure of the local stochastic $p$-Laplace equation is proven.

KW - Stochastic variational inequality

KW - Nonlocal stochastic partial differential equations

KW - Singular-degenerate SPDE

KW - stochastic $p$-Laplace equation

KW - ergodicity

UR - https://arxiv.org/abs/1507.04545

U2 - 10.1137/15M1049774

DO - 10.1137/15M1049774

M3 - Article

VL - 48

SP - 4094

EP - 4125

JO - SIAM Journal on Mathematical Analysis

JF - SIAM Journal on Mathematical Analysis

SN - 0036-1410

IS - 6

ER -

ID: 9576465